skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abbott, Peter M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Existing global volcanic radiative aerosol forcing estimates portray the period 700 to 1000 as volcanically quiescent, void of major volcanic eruptions. However, this disagrees with proximal Icelandic geological records and regional Greenland ice-core records of sulfate. Here, we use cryptotephra analyses, high-resolution sulfur isotope analyses, and glaciochemical volcanic tracers on an array of Greenland ice cores to characterise volcanic activity and climatically important sulfuric aerosols across the period 700 to 1000. We identify a prolonged episode of volcanic sulfur dioxide emissions (751–940) dominated by Icelandic volcanism, that we term the Icelandic Active Period. This period commences with the Hrafnkatla episode (751–763), which coincided with strong winter cooling anomalies across Europe. This study reveals an important contribution of prolonged volcanic sulfate emissions to the pre-industrial atmospheric aerosol burden, currently not considered in existing forcing estimates, and highlights the need for further research to disentangle their associated climate feedbacks. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. null (Ed.)
    Abstract. Volcanic eruptions are a key source of climatic variability, andreconstructing their past impact can improve our understanding of theoperation of the climate system and increase the accuracy of future climateprojections. Two annually resolved and independently dated palaeoarchives –tree rings and polar ice cores – can be used in tandem to assess thetiming, strength and climatic impact of volcanic eruptions over the past∼ 2500 years. The quantification of post-volcanic climateresponses, however, has at times been hampered by differences betweensimulated and observed temperature responses that raised questions regardingthe robustness of the chronologies of both archives. While manychronological mismatches have been resolved, the precise timing and climaticimpact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through acombination of tephrochronological evidence and high-resolution ice-corechemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of theIcelandic Veiðivötn–Bárðarbunga volcanic system in directassociation with a notable sulfate peak in TUNU2013 attributed to thisevent, confirming that this peak can be used as a reliable and precisetime marker. Using seasonal cycles in several chemical elements and 1477 CEas a fixed chronological point shows that ages of 1453 CE and 1458 CE can beattributed, with high precision, to the start of two other notablesulfate peaks. This confirms the accuracy of a recent Greenland ice-corechronology over the middle to late 15th century and corroborates thefindings of recent volcanic reconstructions from Greenland and Antarctica.Overall, this implies that large-scale Northern Hemisphere climatic coolingaffecting tree-ring growth in 1453 CE was caused by a Northern Hemispherevolcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphereeruption, previously assumed to have triggered the cooling, occurred laterin 1457 or 1458 CE. The direct attribution of the 1477 CE sulfate peak to the eruption ofVeiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climaticimpact. A tree-ring-based reconstruction of Northern Hemisphere summertemperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and−0.1 ∘C relative to the 30-year period around the event, as well as arelatively weak and spatially incoherent climatic response in comparison tothe less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruptionoccurred around the inception of the Little Ice Age and could be used as achronostratigraphic marker to constrain the phasing and spatial variabilityof climate changes over this transition if it can be traced in moreregional palaeoclimatic archives. 
    more » « less